

KING SAUD UNIVERSITY DEANSHIP OF COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT

SYLLABUS AND CONTENTS OF MATH 101 (1446 H)

Course Name: Differential Calcul Course Number: Math 101 Prerequisite:	us Credit Hours: 3 hours Actual Hours: 5 hours			
Semester: Second Semester				
Head of the Department	Dr. Abdulrahman Alzahrani	Phone:	94509	
Office:	2562	E-mail:	chair-math@cfy.ksu.edu.sa	
Course Coordinator:	Dr. Amr Abdulaty	Phone:	94583	
Office:	2483	E-mail:	math150.coo@cfy.ksu.edu.sa	
Office hours:	(8:00AM-4:00PM)- (from Sunday to Thursday)			
Office:	2443 "Learning Resources Centre"			
Textbook: Differential Calculus, Fourth Editic	nn 2019			

Differential Calculus, Fourth Edition, 2019

Authors:

Ibraheem Alolyan, Nasser Bin Turki, Tahsin Ghazal, Obaid Al-Gahtani and Khaled Khashan

References:

- Swokowski, E, W; Olinick, M; Penece, D. Calculus, Sixth Edition, PWS Publishing Company, 1994.
- Larson, R & Edwards, R. Calculus, Tenth Edition, Cengage Learning, 2014.
- Anton, H; Bivens, I & Davis, S. Calculus Early Transcendentals, Ninth Edition, Wily & Sons, 2009.

CONTENTS:

Functions: set of Numbers and Inequalities, Functions: Basic Definitions and Examples, Properties of functions, and their combination, Inverse functions, Trigonometric functions, Inverse Trigonometric functions.

Limits and Continuity: Definition of Limit, Limits Laws, Limits Involving Infinity, Continuity of Functions.

Differentiation: The Derivative and the Tangent Line Problem, Differentiation Rules, Derivatives of Trigonometric Functions, The Chain Rule, Implicit Differentiation, Higher Order Derivatives, The Derivative of Inverse Functions.

Applications of Differentiation: Extrema of Functions, The Mean Value Theorem, Increasing and Decreasing Functions, Concavity, Curve Sketching.

GOALS

In this course the student will:

- Define functions and theirs types.
- Define and apply the properties of limits of functions.
- State the definition of continuity and determine where a function is continuous or discontinuous.
- Find the derivative of an algebraic function by using the definition of a derivative.
- Apply differentiation rules to find the derivative of algebraic, trigonometric, exponential, and logarithmic functions and their inverses.
- Apply differentiation rules to find the derivative of the sum, product, quotient, inverse, and composite (chain rule) of elementary functions.
- Find the derivative of an implicitly defined function.
- Find the higher order derivatives of algebraic, trigonometric, exponential, and logarithmic functions.
- State and proof the Mean Value Theorem for derivatives and apply it algebraically and graphically.
- Use the derivative to find critical numbers, increasing intervals, decreasing intervals, local extrema, absolute extrema, concavity intervals and inflection points.
- Apply the derivative to solve problems, including tangent lines to a curve, curve sketching, velocity, and acceleration.

Evaluation:

The evaluation of the students will be continuous during the course and depends on the following:

Mid Term Exam	25		
Activities	10		
Two Home works(Paper)	4+4		
Online Home works	7		
Final Exam	50		

تعليمات مهمة:

١. الخطة التي بين أيديكم أبنائنا الطلاب هي خطة مختصرة تتضمن الأشياء المهمة في المقرر. الخطة التفصيلية وكل ما يتعلق بالمقرر موجود على موقع السنة الأولى المشتركة على الرابط:

https://cfy.ksu.edu.sa/ar/node/1196

- يحتسب الغياب منذ اليوم الأول من الفصل الدراسي إلى أخر يوم قبل الاختبارات النهائية.
 - ٣. في حالة تأخر الطالب عن ٥ دقائق، يسجل متأخرا.
 - ٤. يتم احتساب كل مرتين تأخير، بمرة واحدة غياب.
 - . يحرم الطالب من المقرر إذا تجاوزت غياباته ٢٥٪ من ساعات الحضور.

Course Schedule and Contents:

Chapter	Weeks	Section	Lecture "Teacher"	Lecture "Students"	For Students
Chapter One .		1.1 Sets of Numbers and Inequalities	Example: 1.1.2, 1.1.4 (except d) Related Problem: 1 Exercise: (18)	Exercise: (7,8,17,21,22,23)	1,3,5,6,8,16,19
		1.2 Functions	Example: 1.2.3, 1.2.4, 1.2.5, 1.2.8 Exercise: (25,60)	Exercise: (9,10,11,12,16,20,59 ,66,69)	14,17,19,23,26,31,32,48,54,57,58,63,67
	1-4	1.3 Inverse Functions	Example: 1.3.1, 1.3.2 (a), 1.3.3,1.3.4 Related Problem: 2 (b) Exercise: (30) Remark page 31	Related Problem: (2 {a, c},3, 5) Exercise: (1,2,3,4,5) Example: 1.3.2(b)	8,9,11,13,15,16,29,33,38,41,42
		1.4 Trigonometric Functions and Their Inverses	Example: (1.4.4, 1.4.5, 1.4.7, 1.4.8, 1.4.9, and 1.4.10) Related Problem: (1,2,3,9 {b}) Exercise: (34,41)	Related Problem: (4) Exercise: (20,23,24,38,45,46{b },53 {b} Add more examples of identities	2,4,5,8,9,12,14,16,17,18,21,28,29,37,40,42,44,48,49,50,52

Chapter Two Limits and Continuity	5-8	2.1 Definition of Limit	Example: (2.1.1, 2.1.2) Exercise (from 12 to 17)	Exercise: (9 from 18 to 26) Exercise:	2,3,7,8,10
		2.2 Limits Laws	Example: (2.2.3, 2.2.4, 2.2.5, 2.2.6" except {d}", 2.2.7 {a}, 2.2.9, 2.2.11, 2.2.12) Related Problem: (6 {d, e, f}) Exercise (73) Remark page 90	Exercise: (19,20,35,41,45,66,7 1,74)	1,2,3,7,11,13,121,26,29,30,31,40,49,51,53,55,63,64
		2.3 Limits Involving Infinity	Example: (2.3.1, 2.3.5, 2.3.8, 2.3.9) Related Problem: (3(g)) Exercise (from 1 to 9, 22, 24 and 28)	Related Problem: (4 (any two points), 3 {a}) Exercise (from 10 to 18,21)	19,20,25,32,35,36,37,38,44,45,47,49
		2.4 Continuity of Functions	Example: (2.4.1, 2.4.2, 2.4.4, 2.4.6, 2.4.8, 2.4.11) Exercise (28)	Exercise (2,4,8,9,13,16,27,59)	1,3,5,7,12,13,18,29,30,32,34,40,58,60
Chapter Three Differentiation	9-13	3.1 The Derivative and the Tangent Line Problem	Example: (3.1.3, 3.1.7, 3.1.9) Exercise: (8,30) Related Problem: (1,8)	Exercise: (3,24, 31)	Ex.3.1.6, RP6 2,6,10,13,15,21
		3.2 Differentiation Rules	Use the Remark page 166 (give an example) Example: (3.2.1 {a, b, c}, 3.2.2 {b, c}, 3.2.3 {b}, 3.2.4, 3.2.5) Related Problem: (6) Exercise: (44)	Related Problem: (5) Exercise: (8,12,25)	1,4,5,14,16,17,18,19,23,24,26,28,37,38,40
		3.3 Derivatives of Trigonometric functions	Example: (3.3.1, 3.3.2, 3.3.5) Related Problem: (3)	Related Problem: (2{a}, 5) Exercise: (8,12,14)	1,3,5,7,10,11,13,16,19,20,21,23,27

		3.4 The Chain rule	Example: (3.4.2, 3.4.3, 3.4.6) Exercise: (25) Related Problem: (8)	Related Problem: (3 {b}) Exercise: (4,13,33)	2,5,6,8,9,11,12,15,16,20,21,26,27,29,30,34,38,39,40,47
		3.5 Implicit Differentiation	Example: (3.5.1) Related Problem: (2)	Related Problem (1 {d}) Exercise: (15)	1,2,3,4,5,8,12,13,14,17,19,20,23,26
		3.6 Higher Order Derivatives	Example: (3.6.1, 3.6.7) Related Problem: (2,3)	Exercise: (39)	1,4,6,7,10,12,13,14,16,18,19,22,23,26,27,29,32,34,35,37,38,43
		3.7 The Derivative of Inverse Functions	Related Problem (2) Exercise: (5)	Exercise: (8,13)	6,7,11,14,15,16,17,23
Chapter Four Applications 13-15 of Differentiation		4.1 Extrema of Functions	Example: (4.1.4 except {g}, 4.1.5) Related Problem: (1) Exercise: (24)	Related Problem: (2 {b}) Exercise: (15)	5,6,8,10,16,19,23
		4.2 The Mean Value Theorem	Example: (4.2.1, 4.2.4) Exercise: (1,2)	Related Problem: (1, 2) Exercise: (14)	6,7,11,18,21,24,26
	13-15	4.3 Increasing and Decreasing Functions	Example: (4.3.3, 4.3.4) Exercise: (1,3)	Related Problem: (2, 3 {a}) Exercise: (2,4)	7,11,13,15,26,37,38
		4.4 Concavity	Example: (4.4.1, 4.4.5, 4.4.6) Exercise: (from 5 to 9, 47)	Related Problem: (1 {a}, 2 {b}) Exercise: (10,11)	12,25,28,36,48
		4.5 Curve sketching	Exercise: (3,9)	Exercise: (4, 7)	1,2,8